Translating Natural Language into Linear
Temporal Logic

Menghan Chen
under the supervision of Toryn Klassen, Prof. Sheila Mcllraith, and Prof. Gerald Penn

1 Introduction

The application of Artificial Intelligence to decision making is an active field
of research that has been used to address a wide range of sequential decision
problems. An increasing number of physical devices, from thermostats to robot
vacuum cleaners, are now being controlled by Al-based sequential decision mak-
ing systems. Rather than having to program these devices, our goal is to enable
non-programmers to task, advise, and personalize these systems using a (per-
haps controlled) natural language, obviating the need for a user to know how
to program the system or to know details of how it operates. For instance, a
homeowner might want to instruct their smart home system to “Always make
coffee at Tam on weekdays.”, to “Turn on the air conditioner when it’s above 28
degrees celcius unless I'm on vacation.” or that “I prefer to run the dishwasher
after Tpm.”.

Unfortunately, natural language, unlike a computer programming language, or
other formal language, can be ambiguous. Our work resolves such ambiguity
external to the system by translating natural language into a formal language
that is unambiguous to the underlying sequential decision system. The formal
language that we appeal to as our target language is Linear Temporal Logic
(LTL) [1], a propositional language extended with temporal modalities that al-
low it to describe properties of a system over time. The vocabulary over which
the LTL is defined is taken from the sequential decision making system — the
actions and propositions that form the basis of this target system. The techni-
cal approach developed in this project is applicable to a diversity of sequential
decision making systems, making them amenable to control and personalization
by a non-programmer via natural language.

2 Approach

To enable users to advise, instruct and task sequential decision making sys-
tems, and more specifically to map from English to LTL, we appeal to tech-
niques from AI knowledge representation and reasoning (KR) and from compu-



tational linguistics. Specifically, we appeal to Combinatory Categorial Gram-
mars (CCG) [2] as a means of mapping English statements in the vocabulary of
the sequential decision making systems to LTL statements in the same vocabu-
lary.

For example, “Always make coffee at 7am on weekdays” would be translated
to the LTL formula “O[weekday A 7Tam — make(coffee)]”. To narrow down the
problem, we restrict the target language to the subset of LTL that captures
natural instructions and personalizations, which in turn constrains the source
language system to a controlled subset of English. For the purposes of this
project, we elected to focus on sequential decision making systems synthesized
from the Planning Domain Definition Language (PDDL) [3]. PDDL is a stan-
dardized AI planning language used in the International Planning Competition,
and it describes the domain knowledge including objects, predicates, and actions
as well as initial and goal state. In the long term, we hope to augment existing
decision-making systems with our parser so that they can be used conveniently.

Linear Temporal Logic: LTL extends propositional logic with modalities that
provide an intuitive but mathematically precise notation for expressing proper-
ties of a dynamical system that vary over time. LTL has been used to represent
temporally extended goals and preferences in planning problems (e.g., [4, 5]).
It contains formulae constructed from atomic propositions, the Boolean con-
nectives and (A), or (V), and negation (—), and the basic temporal modalities
next (O) and until (U). From these temporal operators, we can derive other
useful temporal operators such as eventually (<) and always (). The seman-
tics of LTL is defined with respect to traces - infinite sequences of states, and
in particular the truth assignments to the propositions that comprise the states.

Planning Domain Definition Language (PDDL): PDDL [6] is a commu-
nity standard for the representation of a planning domain model and specific
planning instances. Sequential decision making systems are automatically syn-
thesized from such models and instances. In PDDL, the state of the world
is described in terms of predicates whose truth values change as the result of
actions. Both predicates and actions are parameterized and held for object con-
stants or quantified object types. The planning domain characterizes domain
behavior in terms of such actions and how they affect the truth or falsity of
predicates. It is these predicates, actions and object that collectively induce a
vocabulary that is used by both our controlled natural language (English) and
by our target (LTL) language to automatically induce a domain-specific lan-

guage.

We define the target language for a particular planning problem as a subset
of LTL constructed using the vocabularies from the corresponding PDDL de-
scription. The source language is a controlled natural language, which is like
English but with the vocabulary restricted to terms relevant to the domain,
and the grammar limited to relatively simple constructions that are easier to



parse. For example, in the blocksworld domain, which is about stacking blocks,
a source language instruction might be “Eventually A is on B”, where A and B
are both objects (blocks) and “on” is a property in the domain, denoted by the
predicate “on”. This instruction would be translated to an LTL formula such
as “O(on(A, B))”, which is a machine-understandable goal statement in LTL.

Combinatory Categorial Grammars (CCG): CCG is a powerful (super-
context-free) lexicalized grammar formalism that systematically defines how
words combine to form phrases and sentences in a manner that emphasizes
the semantic consequences of those combinations. The lexical categories have
atomic categories including sentence (S), noun (N), and noun phrase (NP), and
a set of derived functional categories constructed from the atomic ones, which
build more primitive categories through combination with the arguments that
they select for. Under CCG, every lexical element is assigned to one or more
of these categories, each with a semantic meaning expressed as a term from
the typed lambda-calculus. A universal set of CCG rules determines the way in
which these constituents combine together. These can be thought of as algebraic
rules of meaning combination and therefore every grammatical sentence corre-
sponds to a CCG derivation tree that comes with its own composition of the
meaning of the sentence. Some examples of such derivations are shown in Fig-
ure 1 and Figure 2. Here, the occurrences of ¢/’ and ‘\’ in functional categories
specify arguments that must be located to the right and left, respectively of the
functions. Since CCG binds syntax and semantics together, it is widely used
in semantic analysis and parsing, including instruction execution and question
answering. Thus, we elected to use CCG to understand and convert natural
language into LTL.

Eventually A is on B

s\s NP (S\NP)/PP PP/NP NP
AP. eventually(P) A AP. Ax. P(x) Ax. Ay. on(y, x) B
PP
Ay. on(y, B)
S\NP
x. on(x, B)
S
on(A, B)

S
eventually(on(A, B))

Figure 1: Example CCG Derivation from the Blockworld Domain

soil data is always sampled at waypoint0
S/(S\NP) (S\NP)/(S\NP)  (S\NP)/(S\NP) S\NP (S\NP)\(S\NP)/NP N, NP
AP.exists x. soildata(x) & P(x) ~ AP. Ax. P(x) AP. Ax. always(P(x)) Ax.exists y. y) Ay. AP. Ax. at(P(x), y) int0
(S\NP)\(S\NP)
AP. Ax. at(P(x), waypoint0))
S\NP
Ax.exists y. at(sampled(x, y),
S\NP
Ax. exists y.always(at(: L Y), int0))
S\NP
Ax.exists y. always(: ), point0))
S
exists x. exists y. ), int0)) ~ soil_data(x)

Figure 2: Example CCG Derivation from the Rover Domain



As shown above, the first example comes from a simplified domain while the
second one is more complicated with both forward/backward application and
composition, as well as type raising. The derivation yields a sentence with a
compositional interpretation and finally an LTL formula, which demonstrates
the use case of CCG to translate natural language into LTL in the real-world
problem setting.

3 Discussion

The notion of translating from English to LTL to communicate with agents
has been examined previously. LTLMoP [7] defines a controlled language and
its semantics of the sentences in the language with respect to LTL formulae.
The NL2KR [8] platform introduces an interactive multi-stage learning algo-
rithm that, given a user-provided initial lexicon and examples, employs inverse
lambda and generalization to learn the semantics. Similar tasks that translate
natural language directives into temporal and dynamic logic representations
were also presented in [9)].

We experimented with the Clark and Curran Parser [10], a large-scale parser
that is widely used in semantic tasks. It is trained on CCGbank [11], which
is extracted from the Penn TreeBank from the Wall Street Journal (WSJ). We
tested the C&C parser on several PDDL domains, including the Rovers do-
main, which was setup as planetary rovers problems to navigate rovers on a
planet surface, finding samples and communicating to lander. Several chal-
lenges presented themselves. One difficulty we encountered was that the many
PDDL domains are poorly encoded from a KR perspective and not amenable
to easy translation. In particular, predicate names are often hyphenated words,
rather than being parameterized. For example, the Rovers domain has pred-
icates “communicate_soil_data(X)” and “communicate_rock_data(X)” rather
than “communicate(X,Y)”. Also, given the nature of our project, most of
the sentences we tested on are imperative sentences. Yet the training samples
from WSJ lack this kind of data and fail to yield the correct CCG categories.
Therefore, construction of a CCG based on the selected domain abstractions
associated with LTL is required, and this process requires in-depth knowledge
of CCG. We focused on the Rovers domain and constructed sentences and their
CCG derivations accordingly, but further construction and testing are needed.
Moreover, we want to automate the process of constructing CCG derivations
from the desired domains and make it a systematic process. Potential works in-
clude formatting the PDDL domains so that the predicates are fully parameter-
ized and finding ways to automatically construct derivations from the domains
using both domain and linguistic knowledge.



References

[1]

2]

C. Baier and J.-P. Katoen, Principles of Model Checking (Representation
and Mind Series). 'The MIT Press, 2008.

M. Steedman, The Syntactic Process. Cambridge, MA, USA: MIT Press,
2000.

A. Gerevini and D. P. Long, “Plan constraints and preferences in PDDL 3
the language of the fifth international planning competition,” 2005.

J. A. Baier and S. A. Mcllraith, “Planning with first-order temporally
extended goals using heuristic search,” in Proceedings of the 21st National
Conference on Artificial Intelligence (AAAIOG), Boston, MA, July 2006,
pp- 788-795.

J. A. Baier, F. Bacchus, and S. A. Mcllraith, “A heuristic search approach
to planning with temporally extended preferences,” Artificial Intelligence,
vol. 173, no. 5-6, pp. 593-618, 2009.

A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos, “Deter-
ministic planning in the fifth international planning competition: PDDL3
and experimental evaluation of the planners,” Artificial Intelligence, vol.
173, no. 5, pp. 619 — 668, 2009, advances in Automated Plan Generation.

C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting with
language, temporal logic and robot control,” in 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Oct 2010, pp. 1988—
1993.

N. Vo, A. Mitra, and C. Baral, “The NL2KR platform for building natural
language translation systems,” in Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers). Association for Computational Linguistics, 2015, pp. 899-908.

J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn, “What to do and
how to do it: Translating natural language directives into temporal and
dynamic logic representation for goal management and action execution,”
in 2009 IEEE International Conference on Robotics and Automation, May
2009, pp. 4163-4168.

S. Clark and J. R. Curran, “Parsing the WSJ using CCG and log-linear
models,” in Proceedings of the 42Nd Annual Meeting on Association for
Computational Linguistics, ser. ACL '04. Stroudsburg, PA, USA: Associ-
ation for Computational Linguistics, 2004.

J. Hockenmaier and M. Steedman, “CCGbank: A corpus of CCG deriva-
tions and dependency structures extracted from the penn treebank,” Com-
putational Linguistics, vol. 33, no. 3, pp. 355-396, 2007.



