
Music Synthesizer Parameter Estimation Using Analysis

by Synthesis

Student: Siqi Hao1,2

Mentor: Paul Vicol1,2

Supervisors: Sageev Oore2,3, Roger Grosse1,2

1University of Toronto, 2Vector Institute, 3Dalhousie University

1. Introduction

Sound synthesizers used by professional musicians and composers have many
settings that affect aspects of the sound produced. Adjusting these settings
to achieve a desired sound is a difficult and time-consuming process; some
synthesizers have hundreds of parameters, leading to a combinatorial explo-
sion in the number of possible configurations. Due to the difficulty of this
task, there has been increasing interest in automated parameter estimation
using machine learning [? ? ? ]. Gabrielli et al. proposed a supervised con-
volutional model to estimate parameters of a pipe organ synthesizer [? ].
Yee-King et al. evaluated three neural networks (MLP, LSTM, bi-directional
LSTM) on the VST (Virtual Studio Technology) synthesizers [? ].
We explore parameter estimation of musical sounds via analysis by synthe-
sis [? ], which aims to find the hidden causes that generated the observed
data. Given audio from a synthesizer, we aim to recover the parameters
which were used to generate that audio. Our model can be used to predict
MIDI settings from audio samples, enabling musicians to mimic some notes
created by a specific synthesizer (Figure 1). Here, we focus on estimating
the parameters of a physics-based synthesizer called the Karplus-Strong al-
gorithm. In our approach, we represent audio samples as images using the
constant Q transform (CQT) to generate spectrograms. In the following sub-
sections, we provide an overview of the Karplus-Strong algorithm and CQT
spectrograms.
Karplus-Strong. Sound is produced by vibrations, and the exact sound of
an instrument depends on its physical characteristics. Physics-based audio
synthesis models the aspects of the process by which sound is generated. One
such synthesizer is the Karplus-Strong algorithm [? ], which is a simple but

1



(a) MIDI Controller. (b) Post-processing effects.

Figure 1: We focus on recovering the settings of parameters that influence synthe-
sized audio. The settings, such as those used by MIDI controllers (left) and guitar
pedals (right), are often used to achieve effects such as reverb and phaser.

effective model of a plucked string. Starting from a buffer of random noise, it
uses a filter to average the current and the previous samples. The averaged
result is used as the output for the current timestep, and is fed back into
the buffer for future timesteps. Repeating this process simulates the energy
decay that occurs after a string is plucked, due to the the fact that most
energy is used to push the air to create sound and some gets lost due to the
air drag.
Constant Q transform (CQT). CQT [? ] is a visual representation
of audio that is well-suited to musical data (see Figure 2). CQT represents
frequencies on a logarithmic scale, which corresponds to human perception [?
]. Due to this characteristic, the spectrogram produced via CQT exhibits a
higher temporal resolution for higher frequencies, and a higher frequency
resolution for lower frequencies. In all, CQT spectrogram has qualities that
make it suitable for analyzing music audio signals.

Figure 2: An example CQT spectrogram.

2



2. Approach

We use the Karplus-Strong algorithm as a synthesizer to generate audio
waveforms from physical parameters such as the pitch and smoothing factor,
where the pitch refers to the frequency of the sound and the smoothing factor
is related to the damping of a string. Once we have an audio sample produced
by the Karplus-Strong algorithm, we explore adding post-processing effects
such as reverb and phasing, and analyze the parameters used to implement
these effects, such as room scale and phasing decay, respectively. The room
scale simulates the reverberation of sound in rooms of different sizes. The
decay factor affects how much the delayed phase information remains over
time.
We first attempted to predict the parameters that generated a CQT spec-
trogram using a convolutional neural network (CNN), but we found that
directly predicting the parameters given a spectrogram is challenging, just
as it is difficult for most people to identify a single note played on a piano.
Instead, we propose an iterative approach for parameter estimation, moti-
vated by the intuition that if one hears two notes in succession, it is easier
to tell whether the second has a higher or lower pitch than the first, than to
identify the first note without resorting to any comparisons.
Thus, instead of predicting the parameters from one spectrogram, we use a
CNN to regress the difference between the parameters underlying two CQT
spectrograms: we refer to this difference as the delta parameter value (see
Figure 3). In order to train a model for this task, we generated a synthetic
dataset:

D = {(pipipi,CQTiCQTiCQTi, p
′
ip
′
ip
′
i,CQT ′

iCQT ′
iCQT ′
i )}Ni=1 (1)

consisting of pairs of parameter vectors (pipipi, p
′
ip
′
ip
′
i) and their corresponding CQT

spectrograms. To ensure that our dataset covers a wide range of possible
deltas, we first chose the delta values ∆pipipi; then we randomly picked the
initial parameter value, pipipi, and we computed the second parameter value by
subtracting the delta from the first parameter, p′ip

′
ip
′
i = pipipi −∆pipipi. We generated

CQTiCQTiCQTi and CQT ′
iCQT ′
iCQT ′
i using the Karplus-Strong algorithm based on pipipi and p′ip

′
ip
′
i,

respectively.
Our method works as follows: starting from random initial parameters, we
repeatedly predict delta parameters using the trained model and update the
current parameters in order to match the target spectrogram. Typically, the
updated parameters will oscillate stably in 100 iterations. These steps are
formalized in Algorithm 1.

3



Reference CQT spectrogram

 Resulting CQT spectrogram

Karplus-Strong

Figure 3: Iterative Parameter Update Model

Algorithm 1: Iterative Parameter Updates

Input : CQTREFCQTREFCQTREF (The spectrogram for which we want parameters)
Output: ppp (The underlying physical parameters of the sound)
p0p0p0 ← GenerateRandomParameters()

t← 0
iterations← 100
while t < iterations do

CQTpredCQTpredCQTpred ← KarplusStrong(ptptpt)
∆ptptpt ← PredictDelta(CQTpredCQTpredCQTpred,CQTREFCQTREFCQTREF)

pt+1pt+1pt+1 ← ptptpt + ∆ptptpt, t← t + 1
end
return ptptpt

3. Analysis

Our approach learns to predict large delta parameters at first, to move rapidly
towards the correct parameter values, and then to gradually fine-tune the pa-
rameters with smaller deltas. Our model is able to adjust several parameters
simultaneously: the pitch, smoothing factor, room scale, and phasing decay
factor. Figure 4 shows the results of our model over multiple update itera-
tions. We regressed all four parameters simultaneously, and found that the
model was able to converge fairly accurately to values near the reference.

4



Figure 4: Iterative Parameter Updates for 4 Parameters. Top: For each
parameter, we show the updates made by our model over 100 iterations. The red
line indicates the reference parameter value. Bottom: The left-most spectrogram
is the reference, for which we wish to recover accurate parameter values; the other
spectrograms are generated from the parameters produced by successive iterations
of our model (iterations 0, 1, 7, and 60).

Effect of Kernel Shape. Due to the fact that pitch shifting corresponds
to vertical translation of CQT spectrograms, we investigated the effect of
using different convolutional kernel sizes in our CNN. We found that the
shape of the kernels affects the learning capacity. Figure 5 shows the results
obtained by variants of our model using different kernel sizes. Comparing
the top left and top right plots, we show that increasing the height of the
kernel led to a better prediction of large delta pitches. The vertical kernel
(top left) performs better than the horizontal kernel (bottom left) in the
sense that the former captures small delta pitches better. The small, square
kernel (bottom right) behaves worst in predicting both large and small
delta pitches.

5



Figure 5: Iterative Parameter Updates with Different Kernel Sizes. The
red line indicates the reference parameter value. The size of the input spectrograms
to the CNN is 336 × 336. From left to right, from top to bottom, the kernel
sizes are 112× 1, 168× 1, 1× 112, and 5× 5, respectively.

4. Conclusion

We introduced a method to reverse-engineer the physical parameters that
give rise to an observed audio sample. We first train a CNN to predict the
differences in parameter values between pairs of CQT spectrograms; then,
starting from random initial parameters, we iteratively refine the parameters
by generating the corresponding CQT spectrogram, using the CNN to predict
the parameter delta ∆ptptpt needed to move closer to the reference spectrogram,
and updating the parameters as pt+1pt+1pt+1 = ptptpt + ∆ptptpt. We demonstrated that our
approach is powerful enough to simultaneously regress several parameters
that govern both the audio generated by the Karplus-Strong algorithm and
the post-processing effects applied to the Karplus-Strong sample (e.g., reverb
and phaser effects). One promising future work would be to extend this model
to other instrumental sound synthesized by other synthesizers.

6


