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I. INTRODUCTION

Software systems are often composed of multiple related
but independently developed components. A change in one
component could have repercussions in other parts of the sys-
tem. Hence, dealing with component upgrades can become
a time-consuming task for software testers.

One way to manage this problem, as shown by Mora et
al.[1], is to use logic reasoning to determine which parts
of a codebase (called a client program) are affected by a
library update. This is relevant in practice, since for example
the open source projects Delorean, OpenSSL, Linux and
GMP, 71% of the client programs of these projects remain
unaffected by the changes to their library functions. Mora
et al. introduce the notion of client-specific equivalence
(CSE) to determine whether library changes affect individual
clients. They also propose a general algorithmic framework
called CLEVER: Client Specific Equivalence Checker.

Symbolic execution is a program analysis technique that
simultaneously explores the multiple paths that a program
could take under different inputs by allowing it to take
on symbolic – rather than concrete – values[2]. CLEVER
reduces the CSE checking problem to the validity of first-
order formulas via symbolic execution.

Partial functional equivalence of two programs P1 and P2
can be defined as whether any two terminating executions
of P1 and P2 return the same value given the same inputs
[3]. The original implementation of CLEVER (CLEVER-
PyExZ3) described in [1] performs well against state-of-
the-art tools [4] [5] [6] [7] that check for partial functional
equivalence on a set on non-trivial benchmarks. However,
this implementation of CLEVER does present several issues,
including:

• It only accepts Python programs as input, meaning that
all C input programs must be translated to Python. This
is because CLEVER-PyExZ3 is built on top of PyExZ3
[8], a symbolic execution engine for Python written in
Python, and PySMT [9], a Python interface to SMT
solvers. This is also the reason why the tool is limited
to integer reasoning [1].

• There is no support for heap manipulations, floating
point numbers, strings and objects composed of these
primitives [1].

II. APPROACH

Of the limitations listed above, the most pressing one is the
Python-only input, since most of the code in the OpenSSL,

Linux and GMP – and countless other open-source projects
– is written in C. To solve this issue, instead of using
PyExZ3, as done in CLEVER-PyExZ3, we opted to use
KLEE [10] as the symbolic execution engine for this version
of CLEVER (CLEVER-C). KLEE can process C programs
and implements shadow symbolic execution[11]. This flavour
of symbolic execution is ”a technique for generating inputs
that trigger the new behaviours introduced by a patch”[11],
which is relevant to CSE. For that reason and because it is
a state-of-the-art symbolic execution engine, KLEE was a
natural choice.

III. ANALYSIS

We evaluated CLEVER-C and CLEVER-PyExZ3 on 14
benchmarks, each consisting of a pair of programs before
and after some changes in the library. They were a subset
of the same ones tested on the previous implementation of
CLEVER. In total, 9 pairs were equivalent and 5 pairs were
inequivalent.

We performed the experiments on CLEVER-C on an Intel
Core i5 1.8 GHz CPU with 8 GB of memory running macOS
High Sierra (10.13.6), running a Ubuntu 14.04 virtual image
using Docker. CLEVER-PyExZ3 was run on an Intel Core
i7 4.00 GHz CPU with 16 GB of memory running Windows
10 with Cygwin, as reported in [1]. For each benchmark in
both versions, we set a timeout of 300 seconds.

Table I shows the results of the comparison between the
two versions of CLEVER. In all of the cases considered,
CLEVER-C fared worse than CLEVER-PyExZ3. This could
be attributed to the fact that our implementation of CLEVER
does not include key optimizations present in the previous
version, including support for uninterpreted functions and
incremental lazy exploration [1]. Those two optimizations
reduce the number of paths to explore during symbolic
execution. Not implementing these optimizations allows us
to have a baseline version of CLEVER without dealing with
the specifics of the optimizations, which can be cumbersome
when migrating from one symbolic execution engine to
another, as we have done in this implementation.

Another important factor that could have increased exe-
cution time of CLEVER-C is I/O. According to profiling,
on average 21% of runtime was spent doing file I/O. This
is due to a number of temporary files created and pipes
used to connect the inputs and outputs of the the individual
components of the CLEVER framework.



TABLE I: Run-time in seconds of CLEVER-C and
CLEVER-PyExZ3 where ”–” indicates that the tool either
times out or reports inconclusive results.

Benchmarks CLEVER-C CLEVER-PyExZ3
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t

factorial 1.6 0.295
fib × 0.268
get sign2 1.11 0.068
is prime1 1.13 0.056
is prime3 × 1.289
ltfive 1.17 0.108
multiple 2.32 0.077
pos2 – –
pos3 1.17 0.085

N
on

-E
qu

iv
al

en
t factorial 69.10 0.081

fib 1.41 0.216
get sign2 1.31 0.047
loopunreach2 1.34 0.062
loopunreach20 1.31 0.075

IV. CONCLUSION

In this paper, we presented CLEVER-C, which substitutes
CLEVER-PyExZ3’s choice of symbolic engine (PyExZ3)
for KLEE. We compared our implementation against the
previous implementation on a set of non-trivial benchmarks.

In future work, we intend to reduce the overhead intro-
duced by file I/O at all stages of the framework. We also
intend to extend CLEVER-C not only to handle integers,
but other types of numeric data. We also intend to modify
the KLEE engine so that incremental lazy evaluation [1] can
be performed, and modify CLEVER-C to include support for
uninterpreted library calls [1]. Following the long-term goals
detailed in [1], we also intend to extend coverage to heap
manipulations and add support for floating point numbers,
strings, and objects composed of those primitives.
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