Automated Program Synthesis

Yizhe Cheng and Bence Weisz
under the supervision of Victor Nicolet, Anthony Vandikas,
and Professor Azadeh Farzan

July 28, 2020

1 Introduction

Writing a correct computer program can be both difficult and tedious. To
simplify the work of software developers, program synthesizers are used to aid
with this. Synthesizers are themselves programs that automatically generate
programs for developers based on some specifications. Previously, researchers
have used syntactic guided methods for synthesizing programs whereby a rough
skeleton of the program code—a syntactic template—is provided by a user to
aid in finding a correct program. Unfortunately, in many practical cases it is
hard for a user to provide a template [1]. We introduce a method for automated
program synthesis, where the synthesis algorithm generates a program through
an iterative process. For the purpose of this project, the specification consists
of a precondition, a postcondition, and a list of program statements.

2 Background

A trace is a sequence of program statements in the order that they are ex-
ecuted in a program run. A program can be represented as a set of traces;
together these traces represent all possible executions of that program. More-
over, a trace is correct if and only if assuming the precondition, the program
variables satisfy the postcondition after the execution of the trace.

In order to verify the correctness of a program, there are two important
properties that need to be checked, safety and liveness. A program satisfies the
safety property if all traces of the program are correct. A program satisfies the
liveness property if the program eventually terminates for all possible inputs.

We denote the set of programs by .Z(P). A program is well-formed if the
program is constructed according to the syntax rules. .Z(P) is constructed to
only represent the sets of traces that are well-formed programs. In simplified
terms, a set of traces is a well-formed program if a syntactically valid program
can be constructed from the set of traces.

Another important concept in our approach is the representation of correct
programs. We denote the set of correct traces II. From II, we use power set



construction described in [3] to compute Z(II), the power set of II. Z(II)
consists of all subsets of the traces in II. If a program whose set of all possible
executions is a set of traces in & (II), then that program must be safe because
every trace of that program is also in II by definition. However, not every set of
traces in A (II) is a well-formed program. We also define the set €2 to contain
the set of all terminating traces which can intuitively be grouped to form a
terminating program.

3 Approach

We use a counterexample Guided Abstraction Refinement or CEGAR loop
approach as first described in [2], where we take counterexamples—in the form
of a trace—and generalize from them to improve our proofs. Generalizing a
trace involves deriving similar traces which are correct for the same reason as
the given trace is. We will first show our methods for synthesizing safe programs.
Next, we will shows ways in which our methods can be extended to synthesize
safe and terminating programs.

To synthesize safe programs, we need to find correct traces until the algo-
rithm finds a program that is well-formed and satisfies the safety property. To
find correct traces, we take a set of traces in II, which consist of traces whose
correctness is unknown, as counterexamples. Then, using Satisfiability Modulo
Theorems or SMT solver, we generate interpolants from the counterexamples
and generalize II from the interpolants [5]. Next, we compute .Z(P) N Z(II),
which contains only sets of traces that are safe, well-formed programs, and check
its emptiness [6]. In the case that .Z(P) N Z(II) is empty, more counterexams-
ples are taken from II, and interpolants are computed from them to generalize
IT until Z(P) N £(11) is no longer empty, in which case a safe program can be
extracted from £ (P) N Z(II). This concept is illustrated in Figure 1. In the
diagram below, CE denotes counterexample.

[I = II UGeneralize(x)

Is
{Pre}z{Post}
Correct?

Yes
Take CE x ¢11

Program Synthesized

Figure 1: The CEGAR loop for synthesizing safe programs.



Q = Q UGeneralize(x)

Refinement of 11

Is
{Pre} x
Terminating ?

Take CEs
z €ianf(Il) NL(Q)

Program Synthesized

Figure 2: The CEGAR loop for synthesizing programs that satisfy the liveness
and safety properties.

To ensure the generated program also satisfies the liveness property, the ap-
proach simultaneously shows that there is a non-empty set of terminating traces.
As defined earlier, this set will be denoted by Q. € is modified using a similar
CEGAR approach as was used for generating programs that satisfy the safety
property. In this modified approach, counterexamples are taken from the set
which is the intersection of the traces in inf(II) and the traces which have not
already been added to €, expressed as L(2). The traces in inf(II) are traces
whose prefixes have correct extensions in II. On the other hand, the traces in
the set L(Q) are traces which have not been verified to be terminating yet. Then
the traces in the intersected set, inf(IT) N L(§2), are counterexamples which are
correct extensions to their prefixes, and ones that have not been analyzed for
termination. The analysis of these traces is explained bellow. An example of
these traces is shown in Figure 3. The automaton in the diagram will accept
any trace that increments ¢ as long as ¢ < n, and the trace must be finitely long
since eventually, ¢ will be greater or equal to n.

t<n

i+ +
Figure 3: A An infinite counterezample.

To verify the termination of these unchecked counterexamples, a method
described in [4] is used. Terminating counterexamples are added to 2, along
with their generalized counterexamples. The purpose of generalizing traces in
Q) is to add additional traces to 2 which are also terminating. These traces are
terminating for the same reason that the counterexamples of interest were in



the termination analysis.

To synthesize a terminating program, the terminating traces in €2, are grouped
together into combinations of traces. As described earlier, £ (P) N 22 (11) is the
set of well-formed programs which are correct. In processes of generating a
program which also terminates, the set of terminating programs P((2), is also
intersected with the two sets. This way, if the overall set is non-empty, then
there is a well-formed program which is correct and terminating. This process
can been seen in Figure 2.

4 Analysis

First, we consider a special case of synthesis known as verification. This
involves taking a program, along with encodings of a set of pre-conditions and
post-conditions, and verifying that this program satisfies both of those sets. In
this special case, £ (P) contains a single program. Our goal is to verify the
safety property of the program using our synthesis loop. We believe the worst-
case time complexity for our algorithm is in NP, but We are able to verify in
560s that the program in Figure 4 indeed finds the largest element in an array.

while (1 < n
1t |

1i++;
}

Figure 4: A program that finds the largest element in the array A.

Next, using the loop in Figure 2, we attempt to synthesize a terminating pro-
gram that increments the variable ¢ until ¢ equals to the variable n. However,
the generalization procedure for §2 is not functioning as intended so, instead,
the set of traces represented by the automaton in Figure 77 is passed in as €.
Eventually, the program in Figure 77 is synthesized in 382s, but we believe the
worst-case time complexity for this algorithm is also in NP.

5 Conclusion

Automated programming tools will be an invaluable tool to programmers in
the future. Unfortunately, as outlined in the analysis, these methods seem wildly
slow even for trivial algorithms. The complexity of most of the set operations



if(i < n) {
i++;
while (i < n) {
1++;
i

if(i < n) {}
else {}

‘ } else {

i++

. i++ 1++;
i+ + 1< n }
)

(a) A representation of infinite traces that (b) A synthesized program that increases
must eventually terminate. i until i reaches n. i is initially 0 and n is
greater than 0.

as well as the generalization operations lead to an exponential or worse blow
up in complexity. As a result, the development of efficient algorithms for each
of these tasks will be vital if progress is to be made on improving the CEGAR
synthesis approach.

References

[1] et al. Alessandro Abate. Counterexample guided inductive synthesis modulo
theories. 2018.

[2] S. Jha Y. Lu H. Veith E. Clarke, O. Grumberg. Counterexample-guided
abstraction refinement. 2000.

[3] Azadeh Farzan and Anthony Vandikas. Automated hypersafety verification.
2019.

[4] Andreas Podelski Matthias Heizmann, Jochen Hoenicke. Termination anal-
ysis by learning terminating programs. 2014.

[5] Jochen Hoenicke Matthias Heizmann and Andreas Podelski. Refinement of
trace abstraction. 2009.

[6] Moshe Y.Vardi and Pierre Wolper. Automata-theoretic techniques for modal
logics of programs. 1986.



